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Abstract
We introduce SceneNet RGB-D, expanding the previous

work of SceneNet to enable large scale photorealistic ren-
dering of indoor scene trajectories. It provides pixel-perfect
ground truth for scene understanding problems such as se-
mantic segmentation, instance segmentation, and object de-
tection, and also for geometric computer vision problems
such as optical flow, depth estimation, camera pose estima-
tion, and 3D reconstruction. Random sampling permits vir-
tually unlimited scene configurations, and here we provide
a set of 5M rendered RGB-D images from over 15K trajec-
tories in synthetic layouts with random but physically sim-
ulated object poses. Each layout also has random lighting,
camera trajectories, and textures. The scale of this dataset
is well suited for pre-training data-driven computer vision
techniques from scratch with RGB-D inputs, which previ-
ously has been limited by relatively small labelled datasets
in NYUv2 and SUN RGB-D. It also provides a basis for
investigating 3D scene labelling tasks by providing per-
fect camera poses and depth data as proxy for a SLAM
system. We host the dataset at http://robotvault.
bitbucket.org/scenenet-rgbd.html.

1. Introduction

A primary goal of computer vision research is to give
computers the capability to reason about real world images
in a human-like manner. This includes a semantic under-
standing of the objects present in the scene, their locations,
6-DoF poses, and an intuitive grasp of the physics involved.
Recent years have witnessed a huge interest in scene under-
standing, largely sparked by the seminal work of AlexNet
[14] and the increasing popularity of Convolutional Neu-
ral Networks (CNNs). That work highlighted the impor-
tance of large scale labelled datasets when working with
data-hungry supervised learning algorithms. In this work
we focus on the challenge of obtaining large quantities of
labelled data with the aim of alleviating the need for col-
lecting datasets through manual effort.

In particular, we are motivated by tasks which require
more than a simple text label for an image. For tasks such
as semantic labelling and instance segmentation, obtaining
accurate per-pixel ground truth annotations by hand is pro-
hibitively expensive. In other cases it can be almost impos-
sible, such as for fine-grained optical flow data, or metri-
cally accurate 3D pose information for an object. Inspired
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Stanford Scenes NYUv2 SUN RGB-D SceneNet sceneNN SUN CG∗ SceneNet RGB-D

RGB-D videos available 7 3 7 7 3 7 3
Per-pixel annotations NA Key frames Key frames Key frames Videos Key Frames Videos
Trajectory ground truth 7 7 7 7 3 7 3
RGB texturing Non-photorealistic Real Real Non-photorealistic Real Non-photorealistic Photorealistic
Number of layouts 1723 464 - 57 100 45,622 57
Number of configurations 1723 464 - 1000 100 45,622 16,895
3D models available 3 7 7 3 3 3 3
Method of design Manual Real Real Manual and Random Real Manual Random

Table 1. A comparison table of indoor scene datasets and their differing characteristics. SceneNN is an example of a real world dataset that
does provide 3D models, however the models are not water-tight. Stanford Scenes database [6] does not provide any explicit ground truth
as it is primarily designed for scene retrieval. SUN RGB-D captures short video clips but only release single image annotations. *At the
time of this manuscript’s publication the SUN CG dataset was not released. They provide dense volumetric annotations, however only for
single images.

by the recent success of synthetic data for training scene un-
derstanding systems, our goal has been to generate a large
scale dataset of photorealistic RGB-D videos which provide
perfect and complete ground truth for a wide range of prob-
lems.

Our dataset has several key strengths relative to other
publicly available datasets for indoor scene understanding
that make it especially useful for training computer vision
models, which could be used for real-world applications in
robotics and augmented reality. We have used ray-tracing
to generate high quality synthetic RGB images, aiming to-
wards photorealism with full lighting effects and elements
such as motion blur, as well as accompanying synthetic
depth images. The images are rendered from randomly gen-
erated smooth trajectories to create sequential video clips
from a moving virtual camera, opening up research on tem-
poral fusion for high quality labelling. Our process to gen-
erate the contents of the synthetic scenes observed has relied
to the greatest degree possible on fully automatic methods,
with object distributions statistically sampled from publicly
available real-world scene repositories and randomly posi-
tioned within a physics simulation that then ensures feasible
configurations. This means that our pipeline can produce a
greater degree of variety of scene configurations than oth-
ers, enabling a potentially much larger dataset without the
need for human scene design or annotation.

In Section 3 we discuss the overall dataset pipeline and
available ground truth labels. In Section 4 below, we de-
scribe the process of obtaining metric scales of objects from
SUN RGB-D. Section 5 provides a detailed explanation on
random scene generation, and Section 6 talks about gener-
ating random trajectories.

2. Background

A growing body of research has highlighted that care-
fully synthesised artificial data with appropriate noise mod-
els can be an effective substitute for real-world labelled data
in areas that ground-truth data is difficult to obtain. Aubry
et al. [1] used synthetic 3D CAD models for learning visual

elements to do 2D-3D alignment in images, and similarly,
Gupta et al. [7] trained on rendering of synthetic objects to
do alignment of 3D models with RGB-D images. Peng et
al.[17] augmented small datasets of objects with render-
ings of synthetic 3D objects with random textures and back-
grounds to improve object detection performance. FlowNet
[5] and recently FlowNet 2.0 [12] showed that remarkable
improvements can be made with training data obtained from
synthetic scenes for optical flow estimation. de Souza et al.
[4] use procedural generation of human actions with com-
puter graphics to generate large dataset of videos for human
action recognition.

As a precursor to the present work, Handa et al. [9]
produced SceneNet, a repository of labelled synthetic 3D
scenes from five different categories. This repository was
used to generate per-pixel semantic segmentation ground
truth for depth only images from random viewpoints. They
demonstrate that a network trained on 10K images of syn-
thetic depth data and fine-tuned on the original NYUv2 [22]
and SUN RGB-D [23] datasets shows an increase in the per-
formance on the task of semantic segmentation when com-
pared to the network trained on just the original datasets.

For outdoor scenes, Ros et al. generated the SYNTHIA
[20] dataset for road scene understanding, and work by
Richter et al. [19] produced synthetic training data from
a photorealistic gaming engine. This is an exciting avenue,
however it is not always possible to obtain the required data
from gaming engines, which due to proprietary issues lack
the flexibility of a fully open-source alternative. SceneNet
RGB-D uses open-source scene layouts [9] and 3D object
repositories [3] that provide textured objects. We have also
built upon an open-source ray-tracing framework which al-
lows significant flexibility in the ground truth data we can
collect and visual effects we can simulate.

For indoor scenes, recent work by Qui et al. [18] called
UnrealCV provides a plugin to generate ground truth data
and photorealistic images from UnrealEngine. However,
they do not provide any labelled dataset and their plugin
uses scene assets created by artists, which assists in the ap-
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Figure 1. Flow chart of the different stages in our pipeline. Physically realistic scenes are created using Chrono Engine by dropping objects
from the ceiling. These scenes are used to generate automated camera trajectories simulating human hand-held motion and both are passed
on the rendering engine — inspired by OptiX — to produce RGB-D ground truth.

parent photorealism with high quality assets. Assets of this
quality are often proprietary, and difficult to source in large
quantities. Finally, they do not explore random scene gen-
eration systems as we do here.

Our dataset, SceneNet RGB-D, samples random layouts
from SceneNet [9] and objects from ShapeNet [3] to create
a potentially unlimited number of scene configurations. As
shown in Table 1, there are a number of key differences be-
tween our work and other available datasets. It is one of the
first to provide large quantities of photorealistic renderings
of indoor scenes. Hua et al. provide sceneNN [11], a dataset
of 100 labelled meshes of real world scenes, obtained with
a reconstruction system with objects labelled directly in 3D
for semantic segmentation ground truth. Such real-world
datasets are often limited in scale due to the amount of man-
ual effort required.

Recently, Song et al. released the SUN-CG dataset [24]
which consists of 45,622 synthetic scene layouts created us-
ing Planner5D. There are a few key differences between this
and our work. First, they have not aimed towards rendering
photorealistic images of their scenes. Second, our dataset
explicitly provides a sequential video trajectory within a
scene, allowing 3D correspondences between viewpoints
for 3D scene understanding tasks, with the ground truth
camera poses acting in lieu of a SLAM system[15]. Third,
their approach to scene generation is quite different. While
they have many examples of natural looking manually de-
signed scenes, our approach produces more chaotic config-
urations that can be generated on-the-fly with almost no
chance of repeating. Moreover, since layout textures, po-
sitions of light sources, and camera trajectories are all ran-
domised we are able to generate a wide variety of geomet-
rically identical but visually differing renders as shown in
Figure 10.

We believe such randomness could help prevent overfit-
ting by providing a significantly less predictable set of train-
ing examples with high instructional value. It remains an
open question whether randomness is preferrable to well de-
signed scenes for learning algorithms, but the recent works
of FlowNet and FlowNet 2.0 [5, 12] seem to suggest that
randomness is potentially helpful. Randomness also leads
to a simpler data generation pipeline and, given a sufficient
computational budget, allows for dynamic on-the-fly gener-
ated training examples suitable for active machine learning.

A combination of these two approaches, with a reasonable
manually designed scene layouts and added physically sim-
ulated noise and clutter may in the end provide the best of
both worlds.

3. Dataset Overview

The overall process from sampling objects to rendering
RGB-D frames is shown in Figure 1. For the dataset, we
had to balance the competing requirements of frame-rates
for video sequences with the computational cost of render-
ing many very similar images, which would not provide sig-
nificant variation in the training set for CNNs. We decided
upon 5 minute trajectories at 320×240 image resolution, but
with a single frame per second, resulting in 300 images per
trajectory. Each render takes 2–3 seconds on an NVIDIA
GTX 1080 GPU. There is also a trade off between rendering
time and quality of renders (See Figure 9 in Section 7.2).

Our trajectory is calculated with a frame-rate of 25Hz,
however we only render every 25th pose. Each pose con-
sists of a pair of poses, which define the shutter open and
shutter close of the camera. We sample from poses linearly
interpolated between the two points to produce motion blur
artefacts for simulating any rapid camera shaking. Different
ground truth labels can be obtained with an extra rendering
pass e.g. instance labels are obtained by assigning indices
to each object and rendering for each pixel the index of each
object instead of RGB values. Depth is defined as the ray
length from the camera origin to the first surface it inter-
sects with, this provides perfect depth information even in
the case of reflections and motion blur. For ground truth we
do not sample multiple points for each pixel as we do for
RGB, instead a single ray is emitted from the center of the
pixel.

From these ground truth images it is possible to calcu-
late a number of other pieces of ground truth information.
For example, in accompanying datafiles for each trajectory
we store a mapping from each instance label to a semantic
label. These semantic labels are defined with a WordNet id,
which provides a useful network structure for semantic links
and hierarchies. In total we have 255 different WordNet se-
mantic categories, including 40 WordNet ids outside of the
normal corpus, which were added by the ShapeNet dataset.
Given the static scene assumption, the instantaneous optical
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(a) photo (b) depth (c) instance (d) class segmentation (e) optical flow
Figure 2. Hand-picked examples from our dataset. Rendered images on the left and the available ground truth information on the right.

flow can be calculated using the camera pose along with the
depth map. Some examples of the available ground-truth in-
formation for a corresponding image is shown in Figure 2.

Using the inverse camera model reprojection and the per-
fect depth map, it is also possible to calculate the 3D posi-
tion of each surface in the scene. We use this to calculate
voxel correspondence indices (for some arbitrarily selected
voxel size) for an entire trajectory, to mimic the correspon-
dences available in a perfect SLAM system. For an example
colorisation of this correspondence system see Figure 3.

Our dataset is separated into train, validation, and test
sets. Each of these sets has a unique set of layouts, objects,
and trajectories particular to the set. However the parame-
ters for randomly choosing lighting and trajectories remains
the same. We selected two layouts from each type (bath-
room, kitchen, office, living room, and bedroom) for the
validation and test sets making the layout split 37-10-10.

(a) Photo (b) 0.5m voxels (c) 0.15m voxels
Figure 3. On the left is the original photo, on the right are unique
randomly coloured voxels that remain the same throughout a tra-
jectory. Outside the window there is no depth reading so we assign
all of these areas the same default identifier.

For ShapeNet objects within a scene we randomly divide
the objects within each wordnet class into 80-10-10% splits
for train-val-test. This ensures that some of each type of ob-
ject are in each training set. Our final training set has 5M
images from 16K images, our validation and test set have
300K images from 1K different room layouts. Each layout
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has a single accompanying trajectory through it.

4. Obtaining metric scales of CAD models
The majority of 3D models in CAD repositories or open-

source libraries are created by 3D designers and artists with-
out any explicit designation of metric-scale information.
However, it is desirable that the objects placed in our syn-
thetic scenes have similar statistics to their corresponding
real world counterparts in terms of their physical dimen-
sions. Fortunately, datasets like SUN RGB-D [23] are cap-
tured with a depth camera and provide metric 3D bounding
boxes for each labelled object in the scene. We leverage
this information to obtain the height distribution of object
categories, and then randomly sample metric heights from
this distribution to scale each object before placing it in the
scene. We maintain the aspect ratio of these objects during
this scaling procedure. Figure 4 shows probability distri-
bution of heights of some objects as obtained from SUN
RGB-D.

This simple approach is not entirely without drawbacks.
The lack of granularity within classes can lead to multi-
modal height distributions. For example bedside lamps and
floor lamps both are within the same ‘lamp’ class for our
purposes, however their heights vary significantly. If the
height of a floor lamp is applied to a squat bedside lamp,
the resulting object can appear closer in its dimensions to a
refrigerator. Tackling this is a significant problem and some
work has been done which could be useful in future itera-
tions [21].

5. Generating random scenes with physics
We use an off-the-shelf physics engine, Project Chrono1,

to dynamically simulate the scene. We opted for this rather
than a computationally more efficient static geometric anal-
ysis system for a number of reasons. Firstly, the computa-
tional bottleneck in our system was the rendering pipeline,
the physics engine uses the CPU which leaves the GPU free
for rendering and can simulate many scenes in the time it
takes to render one. Secondly, off-the-shelf physics soft-
ware was readily available and quite easy to use, and re-
sulted in reasonable looking layouts. Finally, a full physics
simulator leaves open the potential for physically simulated
dynamic scenes in future work.

To create scenes, we first of all randomly choose the
density of objects per square meter. In our case we have
two of these densities. For large objects we choose a
density between 0.1 and 0.5 objects/m2, and for small
objects (<0.4m) we choose a density between 0.5 and
3.0 objects/m2. Given the floor area of a scene, we then
can easily calculate the number objects needed. We sam-
ple objects for a given scene according to the distribution

1https://projectchrono.org/

of objects categories in that scene-type in the SUN-RGBD
real-world dataset. We do this with the aim of including rel-
evant objects within a context e.g. a bathroom is more likely
to contain a sink or toilet than a microwave (see Figure 5
for an object breakdown by scene type). We then randomly
choose an object class according to the scene type and pick
a random instance uniformly from the available models for
that object type.

The objects are provided with a constant mass (10kg)
and convex collision hull and positioned uniformly within
the 3D space of the layouts axis aligned bounding box. To
slightly bias objects towards maintaining a correctly orien-
tated upwards direction, we offset the center of gravity on
the objects to be below the mesh. Without this, we found
that very few objects such as chairs were in their normal
upright position after the physics simulation had completed.
One drawback of the convex collision hull is that, for exam-
ple, a whole table can sometimes be propped up by a small
object underneath the middle of it.

The physics engine models the movement of objects us-
ing Newtonian laws, and their interactions with each other
and the layout (which is properly modelled as a static non-
convex collision object). We simulate 60s of the system,
leaving the objects to settle to a physically realistic config-
uration. It is important to note that the scene is not neces-
sarily organised and structured in a human manner. It con-
tains objects in random poses and locations but the overall
configuration is physically plausible i.e. we will not have
configurations where an object cannot physically support
another, and unrealistic object intersections are avoided.

6. Generating random trajectories
As we aim to render videos at a large scale, it is imper-

ative that the trajectory generation be automated to avoid
costly manual labour. The majority of previous works have
used a SLAM system operated by a human to collect hand-
held motion: the trajectory of the camera poses returned by
the SLAM system is then inserted in a synthetic scene and
the corresponding data is rendered at discrete or interpo-
lated poses of the trajectory [8, 10]. However, such reliance
on humans to collect trajectories quickly limits the potential
scale of the dataset.

We automate this process using a simple random camera
trajectory generation procedure which we have not found in
any previous synthetic dataset work. For our trajectories,
we have the following desiderata. Our generated trajecto-
ries should be random, but slightly biased towards look-
ing into central areas of interest, rather than, for example
panning along a wall (See Figure 6 for an analysis on the
number of instances visible for any given image in our fi-
nal dataset). It should contain a mix of fast and slow rota-
tions such as those of a human operator focussing on nearby
and far away points. It should also have limited rotational
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(a) chair (b) desk (c) bed

(c) cabinet (d) table (e) lamp
Figure 4. Probability distributions of heights (in m) of different objects as obtained from SUN RGB-D. It is interesting to see that some
objects like cabinets and lamps clearly do have multimodal height distributions.

freedom that emphasises yaw and pitch rather than rolling,
which is a less prominant motion in human trajectories.

6.1. Two body camera trajectories

To achieve the desired trajectory paths we simulate two
physical bodies in space. One defines the location of the
camera, and another, the point in space that it is focussing
on as a proxy for a human focussing on random points in a
scene. We take the simple approach of locking roll entirely,
by setting the up vector to alway be along the positive y-
axis, these two points then completely define the camera
coordinate system.

The physical approach has a number of benefits. Firstly,
it provides an intuitive set of metric physical properties we
can set to achieve a desired trajectory, such as the strength
of the force in Newtons and the drag coefficients. Secondly,
it naturally produces smooth trajectories. Finally, although
not provided in this dataset, it automatically provides a set
of IMU style accelerometer measurements, which could in
future prove useful for Visual-Inertial systems.

We initialise the pose and “look-at” point from a uniform
random distribution within the bounding box of the scene,
ensuring they are less than 50cm apart. As not all scenes are
convex, it is possible to initialise the starting points outside
of a layout, for example in an ‘L’-shaped room. Therefore,
we have two simple checks. The first is to restart the simula-
tion if either body leaves the bounding volume. The second

is that within the first 500 poses at least 10 different object
instances must have been visible. This prevents trajectories
external to the scene layout with only the outer wall visible.

We use simple Euler integration to simulate the motion
of the bodies and apply random force vectors and drag to
them independently. The body is initialized with a position,
p, sampled as described above, and a velocity, v = 0. We
begin by sampling from a uniform spherical distribution.
We achieve this by sampling from a 3-dimensional multi-
variate gaussian, with µ = 0 and Σ = I,

u ∼ N (µ,Σ), (1)

we normalise u to be on the unit sphere and then scale it by
a force constant, f , which we set to 2.5N, to arrive at our
force vector f

f = f
u

||u||
. (2)

We also apply a drag force to dampen fast motions. We
roughly model this as air drag at 20◦ with a 30 cm ball.
With a cross-sectional area A = 0.09m2, drag coefficient
CD = 0.1, and air density ρ =1.204 kgm−3,

d = − v

2||v||
ρACD||v||2 (3)

To calculate the acceleration we assign the body a mass,
m, of 1.0 kg. We use simple Euler integration over a
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Figure 5. Top 50 objects and their log proportions by scene type. The unfortunate number of mailboxes is a result of a mistaken mapping
of the ‘box’ class in SUN RGB-D to a class defined as box in ShapeNets, but which contains primarily mailboxes. This is an unfortunate
mishap that serves to highlight some of the difficulties inherent in working with large quantities of objects and labels in an automated way.
*beds are subdivided into a number of similar classes such as miscbeds, kingsized beds, and here we combine these into a coherent group.

Figure 6. The frequency of images with a certain number of object
instances visible in the dataset.

timestep, τ , which here we set to 7
300 s for the period be-

tween shutter close and shutter open, and 1
60 s for the shutter

open and shutter close exposure time.

vt = vt−1 + τ

(
d + f

m

)
(4)

We also limit the maximum speed of the body to smax,

vt =

{
smax

vt

||vt|| , if ||vt|| > smax

vt, otherwise

Finally, to avoid collisions with the scene or objects we
render a depth image using the z-buffer of OpenGL. If a col-
lision occurs, the velocity is simply negated in a ‘bounce’,
which simplifies the collision by assuming the surface nor-
mal is always the inverse of the velocity vector.
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6.2. Scene and Trajectory Description

Listing 1 shows a sample trajectory file defining the
scene and camera trajectory. We provide the WordNet id,
and also save the object height in meters and the full 3×4
transformation of the object.

1 layout_file:./bedroom/bedroom3_layout.obj
2 object
3 03938244/218f86362028a45b78f8b40f4a2ae98a
4 wnid
5 03938244
6 scale
7 0.416493
8 transformation
9 0.999238 -0.00604157 -0.0385491 1.46934

10 0.00627241 0.999963 0.00587011 -0.0346129
11 0.0385122 -0.00610744 0.999239 -1.00603
12

13 object
14 03938244/ac2477b9b5d3e6e6c7c8ce3bef5c2aa9
15 wnid
16 03938244
17 scale
18 0.169709
19 transformation
20 0.505633 0.123627 0.853845 3.57641
21 -0.00155019 0.989809 -0.142395 -0.0223919
22 -0.862747 0.070676 0.500672 -0.377113
23 ....
24

25 # Poses come in alternating pairs. With shutter open
26 # on the first line then shutter close on the next.
27 # Each line has a timestamp in seconds as well as
28 # the camera position and look at position both defined
29 # in world coordinates. The layout is as follows:
30 # time cam_x cam_y cam_z lookat_x lookat_y lookat_z
31

32 # frame rate (Hz): 25
33 # shutter duration (s): 0.0166667
34

35 0.0000 -2.157 1.234 2.384 -0.5645 2.491 0.5848
36 0.0167 -2.157 1.233 2.384 -0.5646 2.490 0.5847
37

38 0.0400 -2.156 1.232 2.384 -0.5647 2.489 0.5843
39 0.0567 -2.156 1.232 2.384 -0.5648 2.489 0.5841

Listing 1. Partial scene layout document after trajectory generation

7. Rendering photorealistic RGB frames
The rendering engine used was version of the Opposite

Renderer2 [16], a flexible open-source ray-tracer built on
top of the NVIDIA OptiX framework. We added certain ex-
tra features such as phong specular materials, ground truth
materials, and multiple photon maps which can be stored in
CPU memory and swapped unto the GPU. Although there
were other open-source alternatives that we considered e.g.
POVRay, Blender and OpenGL, each one had their own
limitations. For instance, though POVRay is able to use
multi-threading on the CPU, it does not have GPU support.
It is not easy to render high quality visual artefacts such
as global illumination, caustics, and reflections and trans-
parency in OpenGL and we did not find Blender as flexible
for customised rendering as OptiX.

We do not have strict real-time constraints to produce
photorealistic rendering, but the scale and quality of im-

2http://apartridge.github.io/OppositeRenderer/

ages required does mean the computational cost is an im-
portant factor to consider. Since OptiX allows rendering
on the GPU it is able to fully utilise the parallelisation of-
fered by modern day graphics cards. This framework also
provides us with significant flexibility with our rendering
pipeline, enabling us to obtain ground truth information of
various kinds such as depth and object instance number
quite conveniently. Moreover, in future it could also allow
for more complicated BRDF surface properties to be easily
modelled.

7.1. Photon Mapping

We use a process known as photon mapping to approx-
imate the rendering equation. Our static scene assump-
tion makes photon mapping particularly efficient as we can
produce photon maps for a scene which are maintained
throughout the trajectory. A good tutorial on photon map-
ping is given by its creator Jensen et al.[13].

(a) Direct & specular (b) Surface radiance (c) Combined
Figure 7. Comparison of direct and indirect photon mappings

As a quick summary, this technique works via a two-
pass process. In the first pass, simulated photons are emitted
from light sources accumulating global illumination infor-
mation and storing this information in a photon map. In the
second pass radiance information from this photon map is
gathered along with direct illumination from light sources
and specular reflections using ray-tracing to produce the
final render, these separate and combined images can be
seen in Figure 7. Normal ray-tracing allows for accurate re-
flections and transparency renderings such as those in Fig-
ure 8, but photon mapping provides a global illumination
model that also approximates indirect illumination, colour-
bleeding from diffuse surfaces, and caustics (this effect can
be seen through the transparent shower enclosure).

(a) No reflections & transparency (b) With reflections & transparency
Figure 8. Reflections and transparency
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Figure 9. Trade off between rendering time and quality. Each photon map contains approximately 3M stored photons.

7.2. Rendering Quality

Rendering over 5M images requires a significant amount
of computation. We rendered our image on 4-12 GPUs for
approximately one month. An important tradeoff in this cal-
culation is between the quality of the renders and the quan-
tity of images. Figure 9 shows two of the most important
variables dictating this balance within our rendering frame-
work. Our final dataset was rendered with 16 samples per
pixel and 4 photon maps. This equates to approximately 3s
per image on a single GPU.

An important threshold for the purposes of photon-
mapping is that anymore than 8 photon maps exceeds the
available 32GB memory. For less than 8 photon maps, we
can precalculate the photon map once, and the computa-
tional cost is amortised across a trajectory. More than this
and we must either store to disk or recompute a new set of
photon maps for each frame in a trajectory.

7.3. Random Layout Textures and Lighting

To improve the variability within our 57 layouts, we ran-
domly assign textures to each of its constituent components.
Each layout object has a material type, which then gives a
number of random texture images for that type. For ex-
ample, we have a large number of different seamless wall
textures, floor textures, and curtain textures.

As well as this, we add random lighting to the scene. A
number of lights between 1 and 5 is selected. We have two
types of lights, spherical orbs, which serve as point light

(a) Version 1 (b) Version 2
Figure 10. Different renderings of the same geometric scene with
different lighting and layout textures.

sources and parallelograms which act as area lights. We
randomly pick a hue and power of each light and then add
them to a random location within the scene. We bias this
location to be within the upper half of the scene.

This approach allows an identical geometric layout to re-
sult in renders with different visual characteristics, see Fig-
ure 10. In this work we have only rendered a single version
of each layout, however the availability of such pairs could
prove an interesting facet of such randomisation in future.

7.4. Camera Model and CRF

Our camera is a simple global shutter pinhole model,
with a focal length of 20cm, a horizontal FoV of 60◦and ver-
tical FoV of 40◦. In order to make sure the rendered images
are a faithful approximation to the real-world images, we
also apply a non-linear Camera Response Function (CRF)
that maps the irradiance to quantised brightness as in a real
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camera. We use a hard coded CRF in our case as shown
in Figure 11, however it would be relatively simple to also
randomise these parameters.

Figure 11. The Camera Response Function used by our renderer.

7.5. Motion Blur

For fast motion we integrate incoming rays throughout
a shutter exposure to approximate motion blur — this can
be efficiently performed within the rendering process by
changing the poses from which samples are drawn for each
pixel and integrating the irradiance value rather than for ex-
ample averaging RGB values after rendering. To calculate
the motion blur we draw linearly interpolated lines between
the camera position and look-at position at both shutter open
and shutter close. Then when rendering we uniformly sam-
ple a value from U(0,1) for different camera and “look-at”
positions and then render in those sampled poses. For an
example rendering using this technique see Figure 12.

The motion blur does not affect the ground truth outputs
of depth or instance segmentations. For these images we set
the pose to be the exact midpoint of the shutter exposure.

(a) without motion blur (b) with motion blur
Figure 12. Motion blur examples.

8. Conclusion
We have tackled the problem of producing realistic syn-

thetic per-pixel labelled data, and we anticipate that the

scale and quality of this dataset could help bridge the gap
between simulations and reality and be suitable for domain
adaption tasks [2]. We highlight some of the problems we
have successfully tackled such as physically realistic scene
layouts, sensible random camera trajectory generation, and
photorealistic rendering. We also note certain areas where
more work is needed. The primary challenges still to be
faced include curating accurately metric scaled objects, and
insuring accurate and consistent labels on object datasets.
As mentioned in Figure 5, our automated systems mistak-
enly found mailboxes from ShapeNets when searching for
the object category ‘box’. This unfortunately led to large
numbers of mailboxes in indoor scenes. At present even a
synthetic dataset requires significant manual intervention in
cases such as this to prevent mistakes.

Although immediately useful for many computer vision
tasks, the present work has a number of limitations. Firstly,
the scenes are static. This allows us to take advantage of ef-
ficient rendering techniques, but dynamic scenes, including
soft bodies, would provide a more faithful representation of
the real world. Secondly, we do not have certain intrinsic
physical attributes of objects, such as mass or friction co-
efficients. Both of these limitations mean that the dataset
is not immediately applicable to active agents in an inter-
active physically realistic dynamic scene. However, given
enough compute power, our rendering pipeline could po-
tentially provide rendering data on-the-fly for these sorts of
systems.

The randomness inherent in our pipeline also allows for
a continuous stream of unseen training examples, dynami-
cally designed to target current limitations of a model being
trained. In the future, it is likely that the generation of train-
ing data and the training of models will become more tightly
interleaved, and the advantages of automatically generated
training data becomes clear.
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